Modelling microtubules in the brain as n-qudit quantum Hopfield network and beyond
نویسندگان
چکیده
The scientific approach to understand the nature of consciousness revolves around the study of human brain. Neurobiological studies that compare the nervous system of different species have accorded highest place to the humans on account of various factors that include a highly developed cortical area comprising of approximately 100 billion neurons, that are intrinsically connected to form a highly complex network. Quantum theories of consciousness are based on mathematical abstraction and Penrose-Hameroff Orch-OR Theory is one of the most promising ones. Inspired by Penrose-Hameroff Orch-OR Theory, Behrman et. al. (Behrman, 2006) have simulated a quantum Hopfield neural network with the structure of a microtubule. They have used an extremely simplified model of the tubulin dimers with each dimer represented simply as a qubit, a single quantum two-state system. The extension of this model to n-dimensional quantum states, or n-qudits presented in this work holds considerable promise for even higher mathematical abstraction in modelling consciousness systems.
منابع مشابه
Neural Network Modelling of Optimal Robot Movement Using Branch and Bound Tree
In this paper a discrete competitive neural network is introduced to calculate the optimal robot arm movements for processing a considered commitment of tasks, using the branch and bound methodology. A special method based on the branch and bound methodology, modified with a travelling path for adapting in the neural network, is introduced. The main neural network of the system consists of diff...
متن کاملEstimation of Network Reliability for a Fully Connected Network with Unreliable Nodes and Unreliable Edges using Neuro Optimization
In this paper it is tried to estimate the reliability of a fully connected network of some unreliable nodes and unreliable connections (edges) between them. The proliferation of electronic messaging has been witnessed during the last few years. The acute problem of node failure and connection failure is frequently encountered in communication through various types of networks. We know that a ne...
متن کاملModeling Quantum Mechanical Observers via Neural-Glial Networks
We investigate the theory of observers in the quantum mechanical world by using a novel model of the human brain which incorporates the glial network into the Hopfield model of the neural network. Our model is based on a microscopic construction of a quantum Hamiltonian of the synaptic junctions. Using the Eguchi-Kawai large N reduction, we show that, when the number of neurons and astrocytes i...
متن کاملModelling of High Quantum Efficiency Avalanche Photodiode
A model of a low noise high quantum efficiency n+np Germanium Photodiode utilizing ion implantation technique and subsequent drive-in diffusion in the n layer is presented. Numerical analysis is used to study the influence of junction depth and bulk concentration on the electric field profile and quantum efficiency. The performance of the device is theoretically treated especially at the wave-l...
متن کاملمحاسبه ظرفیت شبکه عصبی هاپفیلد و ارائه روش عملی افزایش حجم حافظه
The capacity of the Hopfield model has been considered as an imortant parameter in using this model. In this paper, the Hopfield neural network is modeled as a Shannon Channel and an upperbound to its capacity is found. For achieving maximum memory, we focus on the training algorithm of the network, and prove that the capacity of the network is bounded by the maximum number of the ortho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. General Systems
دوره 45 شماره
صفحات -
تاریخ انتشار 2016